
1 Introduction
The LPC54628 is a family of Arm® Cortex®-M4 based microcontrollers used in
embedded applications. The SPI flash interface is available on all LPC546xx
devices. Compared to parallel flash devices with higher pin count, the SPI
Flash Interface (SPIFI) allows low-cost serial flash memories to the CPU with
little performance penalty.

This application note describes how to implement Execute In Place (XIP)
feature with SPIFI, data access and performance benchmark with KEIL.

2 SPI Flash Interface (SPIFI)

2.1 Features
• Quad SPIFI to external flash

• Transfer rate up to SPIFI_CLK/2 bytes per second

• Code in the serial flash memory can be executed same as in the CPU’s internal memory directly into the CPU memory
space

• Supporting 1-, 2-, and 4-bit bidirectional serial protocols

• Half-duplex protocol compatible with various vendors and devices

• Maximum supported bit rate for SPIFI mode: 100 Mbit/s

2.2 SPIFI operation modes
SPIFI has two operational modes:

• Memory mode - whereby the contents of FLASH are memory mapped in the chip

• Command mode - Whereby the user can manually construct command sequences for the flash

3 XIP feature implement

3.1 SPIFI initialization
SPIFI is not initialized when the system is booting and it must be initialized before running code which is allocated in SPIFI Flash.
Therefore, before the SPIFI initialization, allocate all related codes to run in RAM or internal FLASH. Users can change code
allocation by modifying the linker file.

The demo project, loaded at SDK_2.8.2_LPCXpresso54628_SPIFI\boards\lpcxpresso54628\demo_apps\spifi_usage\MDK,
shows how to enable SPIFI and test the XIP feature.

1. Initialize pins for SPIFI.

Contents

1 Introduction......................................1
2 SPI Flash Interface (SPIFI)............. 1
2.1 Features.......................................1
2.2 SPIFI operation modes................ 1
3 XIP feature implement.....................1
3.1 SPIFI initialization........................ 1
3.2 Code location edit........................ 2
3.3 Code download............................3
3.4 Running the demo code...............4
4 SPIFI Flash data access................. 5
4.1 Write data to SPIFI Flash.............5
4.2 Read data from SPIFI Flash........ 5
5 SPIFI Flash performance................ 6

AN13165
LPC546xx SPIFI Usage and Performance
Rev. 0 — February 25, 2021 Application Note

In the BOARD_InitPins(), we initialize GPIO for SPIFI. Initialize P0_23, P0_24, P0_25, P0_26, P0_27, P0_28 to SPIFI CS,
IO(0), IO(1), CLK, IO(3), IO(4).

2. Complete the command table for SPIFI flash.

Figure 1. SPIFI flash command table

In the spifi_flash.c, define macro FLASH_W25Q to select the correct flash operation command table for SPIFI
flash. Users can refer to the specifications of SPIFI Flash to complete the command table following the format of
spifi_command_t struct.

3. Implement the initialization function for SPIFI.

Figure 2. SPIFI initialization flowchart

The spifi_flash_init() function in spifi_flash.c will initialize the SPIFI and set the SPIFI flash to work with quad mode
if needed.

3.2 Code location edit
To allocate SPIFI flash initialization code to internal flash and some demo code into SPIFI flash, we can edit linker file to accomplish
it. In KEIL IDE, we can modify the LPC54628J512_flash.scf file as below.

Figure 3. SPIFI Flash start address and size definition

NXP Semiconductors
XIP feature implement

LPC546xx SPIFI Usage and Performance, Rev. 0, February 25, 2021
Application Note 2 / 7

Figure 4. Code load and execution address

In the demo project, we implement a function named spifi_flash_func() in spifi_flash_test.c to print a string by debug uart.

Figure 5. Test function

After compiling the project and checking the map file, we can find that the spifi_flash_func() function has been allocated to
SPIFI flash.

Figure 6. Map file

3.3 Code download
To download codes to SPIFI flash, add external flash programming algorithm in the IDE. At LPC54628 EVK, the external flash
connected to SPIFI is W25Q128JVFM, so add the corresponding programming algorithm.

NXP Semiconductors
XIP feature implement

LPC546xx SPIFI Usage and Performance, Rev. 0, February 25, 2021
Application Note 3 / 7

Figure 7. Programming algorithm configurations

Please note the size of RAM for Algorithm. Sometimes we shall extend the size value big enough to load programming
algorithm code.

3.4 Running the demo code
In the main function, we call the function allocated to SPIFI flash and check the print output.

Figure 8. Main function

NXP Semiconductors
XIP feature implement

LPC546xx SPIFI Usage and Performance, Rev. 0, February 25, 2021
Application Note 4 / 7

Figure 9. Print output

As shown in Figure 9, the function allocated to SPIFI flash can run successfully. It means that the XIP feature is
successfully enabled.

4 SPIFI Flash data access

4.1 Write data to SPIFI Flash
To write data to SPIFI flash when code is running, follow the two conditions as below:

• The code related to write data to SPIFI flash can not be allocated at SPIFI flash.

• Set the SPIFI to Command Mode.

Users can call functions loaded at RAM or internal flash to set the SPIFI flash to Command Mode, then erase flash and write data
to SPIFI flash.

The demo project,
SDK_2.8.2_LPCXpresso54628_SPIFI\boards\lpcxpresso54628\demo_apps\spifi_usage\MDK\spifi_usage.uvmpw, shows
how to write data to SPIFI flash and read data from it.

Figure 10. Write data to SPIFI flash

From the definition of spifi_sector_program_test() and the linker file, user can find that this function is loaded to RAM space.

The system will set the SPIFI work with command mode, erase one sector, and write data into SPIFI flash page by page.

4.2 Read data from SPIFI Flash
When SPIFI is in the Memory Mode, users can read SPIFI content directly with a pointer. Set the pointer points to the target
address and get its value.

There is no restriction for reading data code location address, all of RAM, internal flash and SPIFI flash can work.

NXP Semiconductors
SPIFI Flash data access

LPC546xx SPIFI Usage and Performance, Rev. 0, February 25, 2021
Application Note 5 / 7

Figure 11. Read data test

5 SPIFI Flash performance
CoreMark is a simple and sophisticated benchmark, designed specifically to test the functionality of a processor core.

The project, located at
SDK_2.8.2_LPCXpresso54628_SPIFI_Features\boards\lpcxpresso54628\demo_apps\spifi_coremark\mdk, is the SPIFI flash
CoreMark test project. Users can run it with LPC54628 EVK to get the CoreMark score from the debug uart0. All of CoreMark
information will be printed by uart0.

Click Options for Target → Linker → Misc controls and replace --predefine=”-D__coremark_spifi_flash__” with --predefine=”-
D__coremark_internal_flash__” or --predefine=”-D__coremark_sram__” to test the CoreMark score of internal flash or SRAM.

Table 2 describes the CoreMark score of the RAM, internal flash and SPIFI flash base on KEIL IDE.

Table 1. Test environment

LPC54628 Main Clock: 220 MHz, SPIFI Clock: 96 MHz

KEIL SETTING V5.33, -Ofast

SDK 2.8.2

Table 2. CoreMark score of RAM, internal flash and SPIFI Flash base on KEIL IDE

Code location Score (Iterations/Sec/MHz)

RAM 2.07

Internal Flash 1.65

SPIFI Flash 0.36

NXP Semiconductors
SPIFI Flash performance

LPC546xx SPIFI Usage and Performance, Rev. 0, February 25, 2021
Application Note 6 / 7

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: February 25, 2021
Document identifier: AN13165

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 SPI Flash Interface (SPIFI)
	2.1 Features
	2.2 SPIFI operation modes

	3 XIP feature implement
	3.1 SPIFI initialization
	3.2 Code location edit
	3.3 Code download
	3.4 Running the demo code

	4 SPIFI Flash data access
	4.1 Write data to SPIFI Flash
	4.2 Read data from SPIFI Flash

	5 SPIFI Flash performance

